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Known but unmeasured confounder

We never believe conditional exchangeability holds.

But things can be even worse: There is a known confounder,
but unmeasured! – Then we clearly know we get biased.
How to survive in the presence of known unmeasured
confounders?
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Proximal causal inference helps! ... but where does
it come from?

Let’s first take a glance and then see how it’s
formulated...
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First glance at proximal causal inference

Proximal causal inference strategy is dedicated to deal with such
situation: a (set of) KU- (known but unmeasured) confounder(s).
ATE can be point-identified upon considering a treatment-side
proxy Z and an outcome-side proxy W , with additional
assumptions.
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Alternatives to “KU-confounder”

We need more information and alter our assumption sets!

KU-confounder is, nevertheless, easier to deal with compared to a
unknown-and-unmeasured confounder. There are already
alternatives for a (set of) UU-confounder(s) when conditional
exchangeability doesn’t hold:

• Instrument variable?
• Negative (population/outcome) control?
• Front door formula (causal mediation)?
• ...
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Alternatives to “KU-confounder”

But all the methods listed above are for UU-confounders and are:

• NOT considering the “known” information for a
KU-confounder; and are

• adding new strict assumptions (e.g. modelling assumptions
and rank preservation in NC methods) [1], or

• altering the underlying population (e.g. monotonicity
assumptions in NC/IV methods)

We therefore want another approach that integrates available
information of “the known part” and does not add strong
restrictions / strict assumptions that we don’t believe either.
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Proxy-based thinking

• When data for a confounder U0 is not available, a natural
alternative is to consider one measured proxy [2] of it, U ′;

• Intuitively, if U ′ ∝ U0 and U ′ is strictly only associated with
U0, the average treatment effect (ATE) can be point
identified without additional assumptions.
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Proxy-based thinking

• However, we can never have a perfect proxy, otherwise it’s
equivalent to know everything about U0.

• The actual proxies come with noises and lose information
carried by the targeted confounder;

• Without additional assumptions a proxy may only mitigate
but never eliminate bias [3];

• Error generating mechanism from targeted confounder to
proxy is extremely important [2], e.g. coarsening,
mismeasurement, etc.
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Mismeasured variable as proxies
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Approaching proxy-based inference (I)

• Negative control (NC) exposure (NC/e) and NC outcome
(NC/o) are two most used proxy-based strategies.

• NC/o requires a proxy W that is U -comparable to Y but not
caused by A or sharing a common cause [4];

• NC/e requires a proxy Z that is U -comparable to A but not
causing Y or sharing a common cause [4].
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Approaching proxy-based inference (I)
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Left: NC/o proxy; proxy W is similar enough to Y , except that it
is not caused by A or share common causes;
Right: NC/e proxy; proxy Z is similar enough to A, except that it
cannot cause Y or share common causes.
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Approaching proxy-based inference (I)

A Y

U

W

L A Y

U

Z

L

K N

Left: NC/o proxy; proxy W is a child of U , and is (only)
d-connected with Y ;
Right: NC/e proxy; proxy Z is a child of U , and is (only)
d-connected with A.
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Approaching proxy-based inference (II)

Upon combining both the NC/o- and NC/e-proxies, we get...
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Approaching proxy-based inference (II)

And after some rearrangement, we get our final DAG...
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Nonparametric Identification (I)

Given observed individual level data with a binary treatment
Oi = ⟨Yi ,Ai ,Li ,Zi ,Wi⟩,
an ATE ψ = E[Y a=1 − Y a=0] is nonparametrically identified
without the presence of U , if standard identifiability conditions
A1 through A3 hold:

A1 Consistency: Y a
i = Yi ∀a, a.s.

A2 Treatment positivity over ⟨L,Z ,W ⟩:
Pr[A = a|L,Z ,W ] > 0 ∀a, a.s.

A3 Exchangeability over ⟨L,Z ,W ⟩: Y a ⊥⊥ A|(L,Z ,W ) ∀a
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Nonparametric Identification (I)

With KU-confounders U i , A3 does not hold, and ATE cannot be
identified given Oi and A1-2.
Proximal causal inference nonparametrically identifies ATE if
additional conditions hold [1]:

A4 Independence of Y and Z : Z ⊥⊥ Y |(A,U ,L)
A5 Independence of W and A, W and Z : W ⊥⊥ (Z ,A)|(U ,L)
A6 Exchangeability over ⟨L,U⟩: Y a ⊥⊥ A|(U ,L) ∀a
A7 Treatment positivity over ⟨L,U⟩:

Pr[A = a|L,U ] > 0 ∀a, a.s.
A8 Statistical completeness for U given Z :

E[g(U)|Z ,A = a,L = l] = 0 a.s.⇔ g(U) =
0, ∀ a, l, and a square-integrable function g
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G-formula (II)

Suppose there exists an function h = h(w, a, l) that solves the
equation a.s.:

E[Y |A,Z ,L] =
∫

h(w,A,L) dF(w|A,Z ,L)

then if A1-2, A4-8 holds, ATE is nonparamentrically identified by:
(outcome-side proximal g-formula)

ψ =

∫
L

∫ [
h(w, a = 1, l)− h(w, a = 0, l)

]
dF(w|l) dF(l)

G-methods are all compatible and can be used for estimation.
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G-formula (II)

Assumption A9 suffices for the existence of such a “bridge”
function h = h(w, a, l):
A9 Statistical completeness for Z given W :

E[g(Z )|W ,A = a,L = l] = 0 a.s.⇔ g(Z ) =
0, ∀ a, l, and a square-integrable function g
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G-formula (II)

Note: There are alternatives to completeness assumptions A9
and/or A8 upon considering different “flows of information” and
starting points [5].
With U |W completeness (alternative to A8) and W |Z
completeness (alternative to A9), a treatment bridge function
q = q(z, a, l) is valid, and ATE is identified by:
(treatment-side proximal g-formula)

ψ =

∫
L

∫
(−1)1−aq(z, a, l)y dF(y, z, a|l) dF(l)
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Parametric assumptions

Two-stage least squares (2SLS) are implemented the most for
parametric estimation of an ATE via proximal causal inference
approach.
Given that assumptions A1, A4-6 hold, and that no structural
violation of treatment positivity over ⟨L,U⟩, with additional
parametric assumptions:

P1 E[Y a|A,Z ,L,U ] = β0 + βaA + βlL + βuU ;
P2 E[W |A,Z ,L,U ] = α0 + αlL + αuU

Keling Wang Department of Epidemiology, Erasmus MC Rotterdam
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Parametric estimation

P1 and P2 can be rewritten as:

E[Y a|A,Z ,L,U ] = β0 + βaA + βlL + βuU ⇒
E[Y a|A,Z ,L] = β0 + βaA + βlL + βu E[U |A,Z ,L];
E[W |A,Z ,L] = α0 + αu E[U |A,Z ,L] + αlL ⇒
E[U |A,Z ,L] = −α−1

u α0 − α−1
u αlL + α−1

u E[W |A,Z ,L];
⇒

E[Y a|A,Z ,L] = (β0 − βuα
−1
u α0) + βaA + (βl − βuα

−1
u αl)L

+ βuα
−1
u E[W |A,Z ,L]

= β∗0 + β∗aA + β∗u E[Ŵ |A,Z ,L] + β∗l L
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Parametric estimation

An ATE is then parametrically identifiable through a 2SLS
approach [6], estimated by the coefficient β∗a in a 2SLS regression:

E[Y a|A,Z ,L, Ŵ ;β] = β∗0 + β∗aA + β∗u E[Ŵ |A,Z ,L] + β∗l L
E[W |A,Z ,L;α] = α∗

0 + α∗
aA + α∗

zZ + α∗
l L + ϵw

Note: Statistical and modelling constraints/assumptions (e.g.
distribution; the existence of MGF for error term, etc.) apply for
different types of Y and W . This approach can be generalized in
the presence of effect measure modification [7].
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Time-varying settings

Sequential proxies can be used in a time-varying setting to allow
that sequential exchangeability assumption over L not hold [7]:
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Time-varying settings

Future exposures and past outcomes can serve as valid proxies [8]:
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Closing and take-home message

1 PCI deals with KU-confounders.
2 PCI has its root in measurement error-based thinking and

proxy-based approaches.
3 PCI combines negative control outcome and exposure proxy.
4 PCI makes the use of the residual information carried by

measured proxies around the unmeasured things.
5 Nonparametric estimation of ATE via PCI is flexible and

requires additional statistical assumptions (completeness);
2SLS can be used for parametric estimation.

6 Finding valid proxies is challenging. Mismeasured versions,
future exposures, and past outcomes can sometimes serve as
proxies.
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Thanks!
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