WHO CAN BENEFIT FROM OVARIAN CANCER SCREENING?

A counterfactual prediction modelling / CATE modelling / HTE study of an ovarian cancer screening trial

Keling Wang 02 April 2025

> Causal Inference Group Meeting Dept. Epidemiology, Erasmus MC

CONTENTS

- 1. Basic idea, aims, and data revisited
- 2. Target trial and deviations from the original trial
- 3. Statistical analysis: g-formula + random forest + re-fitting
- 4. Questions and discussion

BACKGROUND, AIMS AND DATA

BACKGROUND

- Ovarian cancer is hard to be early detected.
- The previous screening procedure consists of transvaginal ultrasound (TVU) and CA-125 screening.
- Two large-scale trials reported disappointing results.
 - PLCO (70k randomized, closure at 2009; using single CA125 cutoff at 28 U/ml)
 UKCTOCS (200k randomized, closure at 2020; using an algorithm of CA125)
- Following them, OC screening is not recommended anymore in the meantime.

BACKGROUND

- However, some subgroups of participants could still benefit from the screening strategy, *e.g.* those with very high baseline risks.
- We aim to re-analyze the PLCO trial with 15-year all-cause mortality as primary outcome to:
 - 1. select a set of assumed effect measure modifiers (EMM) and estimate the **conditional average treatment effect** (CATE) conditioning on them;
 - 2. predict the screening effects for women in the trial based on selected predictors;
 - 3. find **characteristic (EMM) combinations** with which one can receive screening benefits.

PLCO TRIAL DATA

- Population:
 - 1. ~ 70k women randomized;
 - 2. ~ 68k women eligible for analysis after applying our TTE criteria (discussed later).
- Treatment regime: deterministic dynamic
 - Treated group: maximal 4 years of TVU (0,1,2,3) and 6 years of CA-125 (0,1,2,3,4,5) until (1) a diagnosis confirmed; (2) lost to follow-up; (3) death; (4) all screening visits completed.
 - 2. Control group: follow-up only until (1) lost to follow-up; (2) death.
- Outcome:
 - 1. All-cause mortality: obtained from trial records and from death registry after trial closure (*primary*)
 - 2. OC-specific mortality: classified according to death cert. codes and a trial committee.

PLCO TRIAL DATA: SUMMARY

• Power of the trial is limited, especially for OC-specific mortality.

Outcome (censored at 15 th year)	# Event treated	# Event control	Crude 15-yr cumulative <i>RR</i> (ITT)	Crude <i>IRR</i> (ITT)
Ovarian cancer- specific mortality	184 / 34238 (0.54%)	177 / 34285 (0.52%)	1.04 (0.85 to 1.28)	1.04 (475,184 person- years) <i>(0.85 to 1.29)</i>
All-cause mortality	5630 / 34238 (16.4%)	5637 / 34285 (16.4%)	1.00 (0.97 to 1.03)	1.00 (477,484 person- years) <i>(0.97 to 1.04)</i>

PLCO TRIAL DATA: SUMMARY

• Censored observations and competing events are not balanced, especially when accounting for non-compliance in per-protocol analysis.

	Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
All-cause	Treated	137	156	209	238	243	298	343	375	405	413	485	510	578	593	647	5630
death	Control	133	174	204	235	263	287	333	355	413	468	489	558	508	619	598	5637
OC death	Treated	2	3	7	9	12	16	12	15	11	20	16	15	15	14	17	184
	Control	1	4	10	7	13	14	8	14	14	18	8	19	19	11	17	177
Censoring	Treated	2	2	3	1	0	0	4	3	7	14	230	552	636	632	*	2086
	Control	1	0	2	0	0	3	1	0	2	32	304	849	876	874	*	2944
Competin	Treated	135	153	202	229	231	282	331	360	394	393	469	495	563	579	630	5446
g event*	Control	132	170	194	228	250	273	325	341	399	450	481	539	489	608	581	5460
Censoring DB data	Treated	1111	548	417	98	77	2	3	2	5	13	214	515	593	596	*	4194
rr data	Control	1	0	2	0	0	3	1	0	2	32	304	849	876	874	*	2944

JAMA. 2011;305(22):2295-2303. doi:10.1001/jama.2011.766

WHAT'S DIFFICULT?

- Dynamic treatment regime (PP/AT)
- Inconsistent trial eligibility criteria and treatment plans.
- Imbalanced losses to follow-up and massive competing events.
- Too many (~40) potential EMMs with limited power.

WORKFLOW

- 1. Target trial emulation to "correct" the original dataset
- 2. Data cleaning and covariate imputation
- 3. g-formula + random forest to model counterfactuals under treated and under control, and calculate CATEs.

Erasmus

4. Re-fitting a simple and explainable model for CATEs.

1. TARGET TRIAL

(Only the most important deviations are shown here)

TTE COMPONENTS AND DEVIATIONS

1. Causal contrast / estimand

Estimand type	Causal contrasts	Outcome and horizon
ITT effect: effect of treatment assignment on	$\psi = \Pr[Y^{z=1} = 0 t, X] - \Pr[Y^{z=0} = 0 t, X]$ (survival difference) $\psi = \Pr[Y^{z=1} = 0 t, X] / \Pr[Y^{z=0} = 0 t, X]$ (survival ratio)	Primary outcome: All-cause mortality /
Effect among compliers: effect of treatment received among those complied with assignment on	$\psi = \Pr[Y^g = 0 t, X, Z = 1] - \Pr[Y^{g'} = 0 t, X, Z = 0]$ $\psi = \Pr[Y^g = 0 t, X, Z = 1] / \Pr[Y^{g'} = 0 t, X, Z = 0]$	overall survival Secondary outcome: OC-specific mortality / OC-specific survival
Treatment effect: effect of treatment received among all eligible women	$\psi = \Pr[Y^g = 0 t, X] - \Pr[Y^{g'} = 0 t, X]$ $\psi = \Pr[Y^g = 0 t, X] / \Pr[Y^{g'} = 0 t, X]$	Horizon: t = 6, 10, 15 yr

TTE COMPONENTS AND DEVIATIONS

2. Eligibility Criteria

Target trial specification	Reference trial (Original trial) specification
(1) Adult women, as registered (in term of sex), aged	(1) Adult women aged 55-74 at the start of follow-
55-74 at the start of follow-up.	up.
(2) Have at least one side of ovaries or fallopian	(2) No history of lung, colorectal, or ovarian
tubes NOT removed, and are at risk of dying from	cancer.
ovarian cancer.	(3) *** Between 1993-1996: No previous
Other same as (2), (5), and (6) in original trial.	oophorectomy; After 1996: This criterion
	dropped.
Deviation from the reference trial:	(4) *** Between 1993-1999: No tamoxifen use at
All women with two ovaries removed are considered	trial inception; After 1999: this criterion dropped.
ineligible regardless of the trial inception calendar	(5) No current treatment for cancer.
date;	(6) No previous surgical removal of the entire
All women with current tamoxifen use are	prostate, one lung, or the entire colon.
considered eligible regardless of the trial inception	
calendar date.	
	Erasmus M

2 MM

TTE COMPONENTS AND DEVIATIONS

3. Treatment strategy: dynamic treatment regime

- Intervention: one follows the assigned screening plan **until** (1) a positive screening result is detected or (2) definitive diagnosis or (3) death.
- Control: follow-ups until death.
- (Under PP and AT) we evaluate the joint effect and assume no synergy.

	Year	-1	0	1	2	3	4	5	6	7+
Treated	TVU	0	1	1	1	1	0	0	0	0
	CA125	0	1	1	1	1	1	1	0	0
Control	TVU	0	0	0	0	0	0	0	0	0
	CA125	0	0	0	0	0	0	0	0	0

Note: Confounding, censoring and competing risk not shown above.

2. STATISTICAL ANALYSIS

G-FORMULA TO ESTIMATE CATE

- G-formula allows to flexibly estimate ATEs while accounting for competing events and censoring under dynamic treatment regimes and time-varying confounding.
- Is there a way to use g-formula for CATE estimation (this way we will solve most difficulties we have here)?

Erasmus

• -- Of course!

G-FORMULA TO ESTIMATE CATE

• What g-formula (an MSM) offers for an ATE / marginal mean of counterfactuals:

$$\Pr\left[Y_{k+1}^{g} = 1\right] = \sum_{\overline{l}} \sum_{i=0}^{k} \Pr\left[Y_{i+1} = 1 \mid \cdots\right] \prod_{j=0}^{l} \left\{\Pr\left[Y_{j} = 0 \mid \cdots\right] f(l_{j} \mid \overline{l}_{j-1}, \overline{a}_{j-1}, \cdots)\right\}$$

• What g-formula implements to estimate this ATE:

histories

5 Predict (simulate)

a sample mean

4. Assign treatment received according to regime

3. Predict (simulate) individual histories using this prob.dist.

according to model

and empirical dist.

of baseline (j = 0)

$$Pr[Y_{k+1}^{g} = 1] = \sum_{\overline{l}} \sum_{i=0}^{k} Pr[Y_{i+1} = 1] \cdots \prod_{j=0}^{i} \{Pr[Y_{j} = 0 | \cdots] f(l_{j} | \overline{l}_{j-1}, a_{j-1}, \cdots)\}$$

6. Sum over the
big soup and get conditioning on (calculated from
last time point Y) 1. Make covariate
prob.dens. histories

G-FORMULA TO ESTIMATE CATE

• What we want g-formula to offer: CATE / conditional mean of counterfactuals, conditioning on baseline (time-fixed) EMMs:

$$\Pr\left[Y_{k+1}^{g}=1 \mid \mathsf{X}\right] = \sum_{\overline{l}} \sum_{i=0}^{k} \Pr\left[Y_{i+1}=1 \mid \cdot, \mathsf{X}\right] \prod_{j=0}^{i} \left\{\Pr\left[Y_{j}=0 \mid \cdot, \mathsf{X}\right] f(l_{j} \mid \overline{l}_{j-1}, \overline{a}_{j-1}, \cdot, \mathsf{X}) f(\mathsf{X})\right\}$$

 There exists a valid modification to g-formula for CATE estimation with time-varying EMMs ^[1], but we need to model this:

$$f\left(l_{j} \mid \overline{l}_{j-1}, \overline{a}_{j-1}^{g}, \overline{x}_{j-1}\right) f\left(x_{j} \mid \overline{x}_{j-1}, \overline{l}_{j}, \overline{a}_{j-1}^{g}\right) f\left(a_{j}^{g} \mid \overline{a}_{j-1}^{g}, \overline{l}_{j}, \overline{x}_{j}\right)$$

The practice is (in principle) to model all *x*, *l*, *a* as variables as time-varying components for which histories needs to be made.

OUR APPROACH AS A SPECIAL CASE

- While the original approach has several limitations (and implementation issues for us)*...
- we propose to consider $\langle \overline{L}, \overline{A} \rangle \perp X$. Since we are in an RCT the independence should be valid. This reduces the things to:

$$\Pr\left[Y_{k+1}^{g}=1 \mid X\right] = \sum_{\overline{i}} \sum_{i=0}^{k} \Pr\left[Y_{i+1}=1 \mid \cdot, X\right] \prod_{j=0}^{i} \left\{\Pr\left[Y_{j}=0 \mid \cdot, X\right] f(l_{j} \mid \overline{l}_{j-1}, \overline{a}_{j-1}, \cdot, \underbrace{\mathsf{Not}_{\mathsf{modelled}}}_{\mathsf{modelled}}\right]$$

$$\Pr\left[Y_{i+1}=1 \mid \overline{L}_{i}=l_{i}, Y_{i}=C_{i}=0, \overline{A}_{i}=\overline{a}_{i}^{g}, X=\mathbf{x}_{0}\right]$$

$$=\Pr\left[Y_{i+1}=1 \mid \overline{L}_{i}=l_{i}, Y_{i}=C_{i}=0\right] \Pr\left[Y_{i+1}=1 \mid \overline{A}_{i}=\overline{a}_{i}^{g}, X=\mathbf{x}_{0}\right]$$

$$Y_{i+1} \sim A_{i} + A_{i}X_{0} + X_{0}$$

$$\operatorname{Erasmus Modelled}$$

PLUGGING RANDOM FOREST

- Therefore, inserting ("plug") a parametric *Y* model conditioning on $\langle X_0, A \rangle$ would allow us to estimate $\Pr[Y_k^g = 1 | X]$: $Y_{i+1} \sim A_i + A_i X_0 + X_0$
- For flexibility and variable selection, we use a (probability) random forest to model the outcome, including all treatment variables, all potential effect measure modifiers, and their interaction terms.
- What's nice about random forest: (a lot)
- When predicting Y (step 5), the node splitting for Y(0) and for Y(1) should be separated. This gives our model more flexibility.

RF-PLUGGED G-FORMULA

Erasmus

- The final model takes these specifications:
- - Y model (random forest)
- - C model (glm, with prior knowledge)
- - D model (glm, with prior knowledge)
- A and L model (lagged glm)

MODEL SPECIFICATION DETAILS

- Y model: (random forest) treatment * EMMs + year + year-of-rand
- C model: Censoring ~ [basic demographic and smoking/alcohol] + [menstruation and pregnancy history] + [current and lagged screening result]
- D model: Compevent ~ [basic] + [lagged result] + [medical history] + [family history]
- Time varying covariate and treatment model:
- Treatment ~ lagged result + lagged treatment + screening history
- Result ~ lagged result + lagged treatment + screening history

VARIABLE SELECTION THROUGH RF

- We start with manually selected ~40 potential EMMs
- Corrected impurity importance is used for variable selection (how much "impurity" could be reduced by splitting on this variable, corrected for variable information amount (levels and type))
- Variable selection goal: not for precision, but for interpretability^{[1]*} (the goal is CATEs but **not** *individual prediction*, so we can pick whatever variable we want to condition on.)
- Variable selection strategy: Recursively picked the most important variables and calculate the importance within the new model. ^[1]

[1] Genuer R et al. Variable selection using random forests. 10.1016/j.patrec.2010.03.014

RE-FITTING AN INTERPRETABLE MODEL

- G-formula + RF outputs predicted conditional counterfactual outcomes (cumulative risk / survival) under treatment, control and natural course.
- We can calculate conditional effects as desired and predict the effect based on EMMs.
- However, which ones of the 15 variables really work? It's hard to tell since we use RF.
- How to make the use of our outcomes for clinical purpose?
- We need an interpretable and simple model that summarize the effect measure modifications.

RE-FITTING AN INTERPRETABLE MODEL

• We re-fit a simple (G)LM:

$$\mathbb{E}\left[\Pr\left[Y^{z=1}=0\right]-\Pr\left[Y^{z=0}=0\right]\left|\mathbf{X}\right] = \mathbf{X}\boldsymbol{\beta}$$

$$\mathbb{E}\left[\Pr\left[Y^{z=1}=0\right]/\Pr\left[Y^{z=0}=0\right]\middle|\mathbf{X}\right] = \exp\left(\mathbf{X}\,\boldsymbol{\beta}\right)$$

Erasmus MC Universitair Medisch Centrum Rotterdam

BOOTSTRAPPING

 We used 100 bootstrapped samples and calculated the 95% CI's using normal method for:

Erasmus

- - ATE, ATT, ATC;
- - magnitude of effect measure modification;
- - CATE predictions;
- - refitted model parameters.

3. SOME RESULTS

TARIE 1		Total	Assigned to intervention A	ssigned to control
		(n = 68,523)	(n = 34,238)	(n = 34,285)
Participant	Age	62.5 (±5.4)	62.5 (±5.4)	62.5 (±5.4)
characteristics	Race			
among those	White	58,385 (85.2%)	29,276 (85.5%)	29,109 (84.9%)
engible	Black	4,229 (6.2%)	2,094 (6.1%)	2,135 (6.2%)
	Hispanic	2,055 (3.0%)	1,009 (2.9%)	1,046 (3.1%)
	Asian and other	3,854 (5.6%)	1,859 (5.4%)	1,995 (5.8%)
	Occupation			
	working	40,338 (58.9%)	20,235 (59.1%)	20,103 (58.6%)
	not working	2,694 (3.9%)	1,283 (3.7%)	1,411 (4.1%)
	retired	23,982 (35.0%)	11,993 (35.0%)	11,989 (35.0%)
	other	1,509 (2.2%)	727 (2.1%)	782 (2.3%)
	Education			
	lower	4,291 (6.3%)	2,160 (6.3%)	2,131 (6.2%)
	high school	26,538 (38.7%)	13,222 (38.6%)	13,316 (38.8%)
	some college	15,059 (22.0%)	7,634 (22.3%)	7,425 (21.7%)
	college or higher	r 22,635 (33.0%)	11,222 (32.8%)	11,413 (33.3%)

TABLE 1 (CONT'D)

	Total	Assigned to intervention A	ssigned to control
	(n = 68, 523)	(n = 34,238)	(n = 34,285)
History of diabetes	6,094 (8.9%)	2,930 (8.6%)	3,164 (9.2%)
History of colorectal diseases	6,136 (9.0%)	3,023 (8.8%)	3,113 (9.1%)
History of any cancers			
No	62,159 (90.7%)	31,118 (90.9%)	31,041 (90.5%)
Yes	4,273 (6.2%)	2,178 (6.4%)	2,095 (6.1%)
Unclear	2,091 (3.1%)	942 (2.8%)	1,149 (3.4%)
History of benign ovarian tumor/c	yst 11,058 (16.1%)	5,209 (15.2%)	5,849 (17.1%)
Family history of ovarian-related	d cancers		
No	64,068 (93.5%)	32,031 (93.6%)	32,037 (93.4%)
Yes	3,328 (4.9%)	1,642 (4.8%)	1,686 (4.9%)
Possibly	1,127 (1.6%)	565 (1.7%)	562 (1.6%)
Smoking pack-years	15.4 (±25.8)	15.1 (±25.6)	15.6 (±26.0)
Alcohol use	44,442 (64.9%)	22,214 (64.9%)	22,228 (64.8%)
Daily total energy intake	1442.8 (±600.8)	1443.2 (±599.4)	1442.5 (±602.2)

TABLE 1 (CONT'D)

	Total	Assigned to intervention A	ssigned to control
	(n = 68,523)	(n = 34,238)	(n = 34,285)
Current sex horn	none use 30,846 (45.0%)	15,486 (45.2%)	15,360 (44.8%)
Age at menopa	ise		
<40	11,952 (17.4%)	5,936 (17.3%)	6,016 (17.5%)
40-44	8,532 (12.5%)	4,298 (12.6%)	4,234 (12.3%)
45-49	15,028 (21.9%)	7,489 (21.9%)	7,539 (22.0%)
50-54	25,119 (36.7%)	12,597 (36.8%)	12,522 (36.5%)
>= 55	7,892 (11.5%)	3,918 (11.4%)	3,974 (11.6%)
Number of preg	gnancies		
never	4,936 (7.2%)	2,455 (7.2%)	2,481 (7.2%)
1-2	15,364 (22.4%)	7,708 (22.5%)	7,656 (22.3%)
3-4	45,282 (66.1%)	22,673 (66.2%)	22,609 (65.9%)
>=5	2,941 (4.3%)	1,402 (4.1%)	1,539 (4.5%)

ITT: EFFECT OF ASSIGNMENT

	15-yea	r effect	10-yea	r effect	6-year	effect
	ATE	ATT + ATC	ATE	ATT + ATC	ATE	ATT + ATC
Overall survival						
- survival difference	025 (028,016)	$\begin{array}{c}004 \\ (012, . 001) \\038 \\ (044, 032) \end{array}$	016 (019,011)	004 (009,0005) 025 (029,020)	009 (011,005)	003 (006, .0004) 014 (017,011)
- survival ratio	.970 (.966, .979)	.993 (.985, .998) .954 (.947, .961)	.982 (.979, .988)	.994 (.989, .999) .973 (.968, .978)	.991 (.988, .994)	.997 (.993, 1.000) .986 (.982, .988)
OC-specific surv	/ival					
- survival difference	002 (003,000)	$\begin{array}{c}000 \\ (002, .001) \\003 \\ (005,001) \end{array}$	001 (002,000)	$\begin{array}{c}000 \\ (001, .000) \\002 \\ (003,000) \end{array}$	001 (001,000)	$\begin{array}{c}000 \\ (001, .000) \\001 \\ (001,000) \end{array}$
- survival ratio	.997 (.996, 1.000)	1.000 (.998,1.001) .997 (.995, .999)	.999 (.998, 1.000)	.999 (.999, 1.000) .998 (.997, 1.000)	.999 (.998,1.000)	.999 (.999, 1.000) .999 (.999, 1.000)

15-year overall survival difference (ITT)

15-year OC-specific survival difference

15-year overall survival difference (treatment)

15-year OC-specific survival difference

ITT: MAGNITUDE OF EMM (PART)

	Diabetes H.	Colorec. H.	Hormone	Benign Ovar/cyst H.	Pack-years	age	Calorie intake		
Overall survival									
15-year	033	024	.012	019	035	023	002		
DoSD	(053,011)	(037,012)	(.004, .020)	(028,009)	(047,023)	(038,011)	(014, .010)		
RoSR	.967	.965	1.018	.973	.946	.958	1.000		
	(.949, .989)	(.948, .981)	(1.007, 1.029)	(.962, .988)	(.931, .964)	(.940, .979)	(.984, 1.015)		
OC-speci	fic survival								
15-year	002	001	.000	002	003	005	.003		
DoSD	(005, .002)	(005, .002)	(002, .002)	(004, .001)	(005, .001)	(008,001)	(001, .006)		
RoSR	.998	.998.	1.000	.998.	.997	.995	1.003		
	(.995, 1.002)	(.995, 1.003)	(.998, 1.002)	(.996, 1.001)	(.995, 1.001)	(.992, .999)	(.999, 1.006)		

POST HOC ROBUSTNESS AND FIT CHECK

- We (plan to) check the following issues to ensure robustness and that the model runs correctly:
- (1) robustness of gformula+rf: compare results from gformula and from causal forest (grf)
- (2) performance of gformula+rf: compare the (observable part) of outcome and censoring with gformula+rf predictions: e.g. check if the actually treated individuals are predicted correctly by g-formula under "treated" treatment regime
- (3) performance of random forest itself: compare rf predictions with actually observed outcomes
- (4) fit the same gformula+rf model on other imputed datasets to check the robustness of imputation.

(1) single run comparison of gformula and causal forest

10-year overall survival difference (causal forest)

10-year overall survival difference (gformula)

ATE: 0.000 (-0.005, 0.005)	ATE: - 0.016 (-0.019, -0.010)
 Positive effect: 35785	Positive effect: 38314
Negative effect: 32738	Negative effect: 30209

(1) single run comparison of gformula and causal forest

	Diabetes H.	Colorec. H.	Hormone	Benign Ovar/cyst H.	Pack-years (4 th – 1 st q.)	age	Calorie intake				
Overall d	Overall difference of survival difference (DoSD) from g-formula										
10-year DoSD	046 (063,027)	024 (033,014)	.012 (.005, .018)	015 (023,008)	027 (037,016)	018 (029,007)	.002 (007, .012)				
Overall s	urvival differer	nce from caus	al forest (singl	e run)							
10-year DoSD	011	006	.002	003	006	001	.001				

(2) Performance on observed part of gformula+rf

Metrics	Among actually treated	Among actually untreated
Overall survival (all-cause mortality)		
AUC	.9991	.9952
Brier score	.0071	.0089
Log Loss	.0432	.0525
PR-AUC	.9171	.7338
Ovarian cancer specific survival (OC-specific mortality)		
AUC	-	-
Brier score	.0002	.0002
Log Loss	.0016	.0018
PR-AUC	.9846	.9832

(3) Performance of random forest when predicting outcomes

DISCUSSION

- 1. How to share our model? Is it necessary to re-fit a model?
- 2. The refitted GLM performs poorly. We can re-fit a more sophisticated model (RF, NN, etc.) and report their parameters. But then the interpretability is worse.
- 3. The scale of EMM on survival is difference from the scale on cumulative incidence.
- 4. Possible alternatives to model the heterogeneity (causal forest)

QUESTIONS?

P

And suggestions?

STEP 2: SPECIFYING MODEL FOR EMM

• We have different choices of specifying EMM when modelling Y. Choice 3: insert causal forest at each time point after predicting $Y^{a=0}$

 $\Pr[Y^{a=0}|X] = \exp(X\alpha);$

$$\tau(\mathbf{X}) = \mathbf{X}\boldsymbol{\beta};$$

Pr[$Y^{a=1}|\mathbf{X}$] = expit ($X\alpha$) + $X\boldsymbol{\beta}$.

This way the selection (and regularization) and splitting of predictors for tau(X) are based on the magnitude of effects rather than counterfactual Y's.

